Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 246

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Report on the lecture of standard committee in the 2023 fall meeting entitled "Standardization Activities for Safe Long Term Operation"

Murakami, Kenta*; Onizawa, Kunio; Yamamoto, Akio*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 66(4), p.199 - 202, 2024/04

The Standards Committee of Atomic Energy Society of Japan has been leading activities related to long-term operation through the revision of the Code of Practice for Aging Management, and we believe that we must continue to make important contributions in light of recent changes in laws and regulations. This paper recapitulates the discussions in the special session conducted at the 2023 fall meeting, and describes the efforts toward safe long-term operation and the points to keep in mind in the standardization of such activities. The important points are (1) to make effective use of knowledge found over time, (2) not to overlook new knowledge that has a significant impact on safety, including obsolescence, (3) to assign a level of importance to the response based on the impact on safety and the likelihood of its occurrence, and (4) to contribute to the establishment of an international knowledge base.

JAEA Reports

Survey and proposal for Japanese-English bilingual translation of technical terms focusing on nuclear disaster prevention

Togawa, Orihiko; Okuno, Hiroshi

JAEA-Review 2023-043, 94 Pages, 2024/03

JAEA-Review-2023-043.pdf:1.53MB

In order to translate nuclear disaster prevention documents written in Japanese into English, the Basic Act on Disaster Management, the Act on Special Measures Concerning Nuclear Emergency Preparedness, and the Convention on Nuclear Safety were surveyed for corresponding terms in Japanese and English. The survey results were integrated and unified English translations were selected. As a result, a Japanese-English correspondence table of technical terms in the field of nuclear disaster prevention was prepared and proposed.

JAEA Reports

Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*

JAEA-Review 2023-027, 126 Pages, 2024/03

JAEA-Review-2023-027.pdf:5.51MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration" conducted from FY2020 to FY2022. The present study aims to understand migration behaviors of radionuclides in relation to the properties of concrete altered by leaching, to develop migration model of radionuclides, and to evaluate waste management scenarios, focusing on underground concrete structures in contact with contaminated water.

Journal Articles

Reviewing codes and standards for long term operation in Japan

Murakami, Kenta*; Arai, Taku*; Yamada, Koji*; Momma, Kensuke*; Tsuji, Takashi*; Nakagawa, Nobuyuki*; Onizawa, Kunio

Transactions of the 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT 27) (Internet), 3 Pages, 2024/03

This paper studied the future vision of codes and standards in Japan by systematically comparing Japanese regulatory rules, standards, and industry guides related to long term operation with international safety standards, and confirmed that the Japanese standard system generally meets their recommendations. The recommendation for the future improvements of Japanese codes and standards were summarized into five items.

JAEA Reports

Inspection of radioactive waste packages stored in the Waste Storage Facility L; Planning and trial operation

Kawahara, Takahiro; Suda, Shoya; Fujikura, Toshiki; Masai, Seita; Omori, Kanako; Mori, Masakazu; Kurosawa, Tsuyoshi; Ishihara, Keisuke; Hoshi, Akiko; Yokobori, Tomohiko

JAEA-Technology 2023-020, 36 Pages, 2023/12

JAEA-Technology-2023-020.pdf:2.79MB

We have been storing drums containing radioactive waste (radioactive waste packages) at waste storage facilities. We have been managing radioactive waste packages along traditional safety regulations. However, over 40 years has passed from a part of them were brought in pit-type waste storage facility L. Most of them are carbon steel 200 L drums, and surface of them are corroded. For better safety management, we started to take drums out from the pit and inspect them in FY 2019. After each inspection, we repair them or remove the contents of the drum and refill new drums if necessary. In this report, we will introduce the planning, the review of the plan, and the trial operation of this project.

JAEA Reports

Effect of preparation conditions and storage time on characteristic and rheological properties of carbonate slurries

Kato, Tomoaki; Yamagishi, Isao

JAEA-Technology 2023-018, 53 Pages, 2023/11

JAEA-Technology-2023-018.pdf:2.6MB

In the decommissioning of Fukushima Daiichi Nuclear Power Station, radioactive carbonate slurry waste was generated using the Advanced Liquid Processing System (ALPS) pretreatment and temporarily stored in a high integrity container (HIC). In 2015, overflow of supernatant from HIC estimate as bubble retention in the carbonate slurry was discovered, increasing the need for a safety assessment of the carbonate slurry stored the HIC (HIC slurry). In this study, a carbonate slurry (simulated slurry) was prepared according to the Mg/Ca mass ratio in the ALPS inlet water of the HIC slurry which overflew the HIC. The effects of reaction time during the pretreatment process, suspended solids concentration (SS concentration), and settling time on the particle composition, morphology and rheological properties of the slurry were investigated. Evaluating the effect of reaction time and concentration process on chemical properties in slurry production, the effect of the reaction time was not confirmed in the simulated slurry that had undergone the concentration process, and slurry prepared at SS concentration of 150 g/L was composed of formless particles have a particle diameter of 0.4 $$mu$$m or less. We also investigate the effect of SS concentration on sedimentability, decrease in SS concentration by dilution with processing solution contributed to an increase in the initial slurry settling velocity. Furthermore, two different flow characteristics were observed depending on the settling time, suggesting that the slurry at the initial settling time has non-Bingham flow properties, whereas it changes to Bingham flow properties as the settling time becomes longer. In addition, yield stress was increased with settling time, and this yield stress was found to be exponentially proportional to the density of the slurry. These results provide knowledge to estimate the current state of HIC slurry and are expected to contribute to the safety assessment.

JAEA Reports

Data report of ROSA/LSTF experiment TR-LF-15; Accident management actions during station blackout transient with pump seal LOCA

Takeda, Takeshi

JAEA-Data/Code 2023-012, 75 Pages, 2023/10

JAEA-Data-Code-2023-012.pdf:4.45MB

An experiment denoted as TR-LF-15 was conducted on June 11, 2014 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment TR-LF-15 simulated accident management (AM) actions during a station blackout transient with TMLB' scenario with pump seal loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). This scenario is featured by loss of auxiliary feedwater functions. The pump seal LOCA was simulated by a 0.1% cold leg break. The test assumptions included total failure of both high pressure injection system and low pressure injection system of emergency core cooling system (ECCS). Also, it was presumed non-condensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of ECCS. When steam generator (SG) secondary-side collapsed liquid level dropped to a certain low liquid level, the primary pressure turned to rise. After the SG secondary-side became voided, the safety valve of a pressurizer cyclically opened which led to loss of primary coolant. Core uncovery thus took place owing to core boil-off at high pressure. When an increase of 10 K was confirmed in cladding surface temperature of simulated fuel rods, SG secondary-side depressurization was started as the first AM action. At that time, the safety valves in both SGs were fully opened. Primary depressurization was initiated by completely opening the pressurizer safety valve as the second AM action with some delay after the first AM action onset. When the SG secondary-side pressure lowered to 1.0 MPa following the first AM action, water was injected into the secondary-side of both SGs via feedwater lines with low-head pumps as the third AM action. A reduction in the primary pressure was accelerated because the heat removal from the SG secondary-side system resumed shortly after the third AM action initiation.

JAEA Reports

Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR) (FY2021)

Department of HTTR

JAEA-Review 2023-016, 82 Pages, 2023/09

JAEA-Review-2023-016.pdf:2.31MB

The High Temperature Engineering Test Reactor (HTTR) is the first Japanese High Temperature Gas-cooled Reactor (HTGR) with 30MW in thermal power and 950$$^{circ}$$C of maximum outlet coolant temperature that is constructed by the Japan Atomic Energy Agency located at Oarai-machi, Higashiibaraki-gun, Ibaraki-ken, Japan. The purpose of the HTTR is establishment of basic HTGR technologies, demonstration of HTGR safety characteristics and so on. The HTTR has had a lot of experience of HTGRs' operation and maintenance throughout rated power operations, safety demonstration tests, long-term high temperature operations and demonstration tests relevant to HTGRs' R&Ds. In the fiscal year 2021, as the HTTR completed activities to conform to the New Regulatory Requirements of Nuclear Regulation Authority, The HTTR restarted since the 2011 off the Pacific coast of Tohoku Earthquake and carried out the Loss-of-forced cooling test without Vessel Cooling System (VCS) operational at 9MW (Three gas circulators trip and VCS is stopped.) as the safety demonstration test. This report summarizes the activities carried out in the fiscal year 2021, which were the situation of the New Regulatory Requirements screening of the HTTR, the operation and maintenance of the HTTR, R&Ds relevant to commercial-scale HTGRs, the international cooperation on HTGRs and so on.

Journal Articles

Impact of MOX fuel use in light-water reactors; Long-term radiological consequences of disposal of high-level waste in a geological repository

Minari, Eriko*; Kabasawa, Satsuki; Mihara, Morihiro; Makino, Hitoshi; Asano, Hidekazu*; Nakase, Masahiko*; Takeshita, Kenji*

Journal of Nuclear Science and Technology, 60(7), p.793 - 803, 2023/07

 Times Cited Count:2 Percentile:53.91(Nuclear Science & Technology)

JAEA Reports

Annual report for FY2021 on the activities of Department of Decommissioning and Waste Management (April 1, 2021 - March 31, 2022)

Department of Decommissioning and Waste Management

JAEA-Review 2023-001, 136 Pages, 2023/06

JAEA-Review-2023-001.pdf:10.65MB

This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2021 to March 31, 2022. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM. In FY2021 radioactive wastes generated from R&D activities in NSRI were treated safely. They were about 206 m$$^{3}$$ of combustible solid wastes and 155 m$$^{3}$$ of noncombustible solid wastes and 113 m$$^{3}$$ of liquid wastes. After adequate treatment, 760 waste packages (in 200 L-drum equivalent) were generated. The total amounts of accumulated waste packages were 126,827 as of the end of FY2021 due to efforts of the restitution of waste packages to the Japan Radioisotope Association and volume reduction treatments of the stored waste packages. Decommissioning activities were carried out for the JAEA's Reprocessing Test Facility (JRTF), the Liquid Waste Treatment Facilities, the Compaction Facilities, and Fusion Neutronics Source (FNS) facilities. As for the R&D activities, studies on radiochemical analyses of wastes for disposal were continued. In order to pass the conformity review on the New Regulatory Requirements for waste management facilities, the Approval of the design and construction method was applied sequentially for the Nuclear Regulation Authority. The ministry of the Environment and Tokai-mura office requested JAEA to dispose of the contaminated soil generated by the accident of the Fukushima Daiichi Nuclear Power Station. The monitoring work at the playground was conducted during this period.

JAEA Reports

Fluorination method for classification of the waste generated by fuel debris removal (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hitachi-GE Nuclear Energy*

JAEA-Review 2022-058, 191 Pages, 2023/02

JAEA-Review-2022-058.pdf:16.99MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Fluorination method for classification of the waste generated by fuel debris removal" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to develop a method for separating nuclear fuel material from waste by fluorination in order to contribute to the classification of waste generated by fuel debris removal at 1F. In order to comprehensively evaluate the fluorination behavior for the generated phase in various MCCI products, some simulated wastes were prepared by controlling redox conditions, and the fluorination experiment was carried out.

JAEA Reports

Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*

JAEA-Review 2022-038, 102 Pages, 2023/01

JAEA-Review-2022-038.pdf:4.76MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration" conducted in FY2021. The present study aims to understand migration behaviors of radionuclides in relation to the properties of concrete altered by leaching, to develop a model to predict concentration profiles, and to analyze waste management scenarios, with a focus on underground concrete structures in contact with contaminated water. Migration behaviors depend on radionuclides and their chemical species. Sorption of I$$^{-}$$ is less significant on C-S-H and C-A-S-H than on hardened cement paste with two orders of magnitude smaller distribution coefficient $$K_{d}$$, while $$K_{d}$$ of U was the same …

Journal Articles

The Development of Petri Net-based continuous Markov Chain Monte Carlo methodology applying to dynamic probability risk assessment for multi-state resilience systems with repairable multi-component interdependency under longtermly thereat

Li, C.-Y.; Watanabe, Akira*; Uchibori, Akihiro; Okano, Yasushi

Journal of Nuclear Science and Technology, 23 Pages, 2023/00

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

Journal Articles

Particle-based simulation of jet impingement behaviors

Takatsuka, Daichi*; Morita, Koji*; Liu, W.*; Zhang, T.*; Nakamura, Takeshi*; Kamiyama, Kenji

Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 10 Pages, 2022/10

Journal Articles

Effect of magnesium silicate hydrate (M-S-H) formation on the local atomic arrangements and mechanical properties of calcium silicate hydrate (C-S-H); In situ X-ray scattering study

Kim, G.*; Im, S.*; Jee, H.*; Suh, H.*; Cho, S.*; Kanematsu, Manabu*; Morooka, Satoshi; Koyama, Taku*; Nishio, Yuhei*; Machida, Akihiko*; et al.

Cement and Concrete Research, 159, p.106869_1 - 106869_17, 2022/09

 Times Cited Count:16 Percentile:87.96(Construction & Building Technology)

Journal Articles

Experimental study of liquid spreading and atomization due to jet impingement in liquid-liquid systems

Yamamura, Sota*; Fujiwara, Kota*; Honda, Kota*; Yoshida, Hiroyuki; Horiguchi, Naoki; Kaneko, Akiko*; Abe, Yutaka*

Physics of Fluids, 34(8), p.082110_1 - 082110_13, 2022/08

 Times Cited Count:2 Percentile:41.08(Mechanics)

Liquid spreading and atomization due to jet impingement in liquid-liquid systems are considered to be crucial for understanding the cooling behavior of high-temperature molten material in a shallow water pool. This phenomenon takes place when a liquid jet enters a pool filled with other immiscible liquid. The jet spreads radially after impinging on the floor while forming a thin liquid film and atomizing droplets. In this paper, we explain the result to quantify the unsteady three-dimensional behavior of the spreading jet by the employment of 3D-LIF measurements and 3-dimensional reconstruction. Under high flow velocity conditions, the phenomena of hydraulic jump and atomization of the liquid film occurred along with the spreading. To evaluate the spreading behavior, a comparison of the jump radius position of the liquid-liquid system as the representative value was made with the one calculated by the existing theory of a gas-liquid system. As the result, the spreading of the liquid film in the liquid-liquid system was suppressed compared with that in the gas-liquid system. Furthermore, the PTV method was successfully used to measure the velocity boundary layer and velocity profile in the liquid film, which are important factors that affect the spreading mechanism of the liquid film. These results revealed that in liquid-liquid systems, shear stress at the liquid-liquid interface causes a decrease in the flow velocity and suppressed the development of the velocity boundary layer. Also, to evaluate the atomization behavior, the number and diameter distribution of the droplets were measured from the acquired 3-dimensional shape data of the jet. As the result, the number of droplets increased with the flow velocity. Based on these results, we concluded that the spreading of the liquid film is affected by such atomization behavior.

JAEA Reports

Fluorination method for classification of the waste generated by fuel debris removal (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hitachi-GE Nuclear Energy*

JAEA-Review 2022-003, 126 Pages, 2022/06

JAEA-Review-2022-003.pdf:8.01MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project. Among the adopted proposals in FY2019, this report summarizes the research results of the "Fluorination Method for Classification of the Waste Generated by Fuel Debris Removal" conducted in FY2020.

JAEA Reports

Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*

JAEA-Review 2021-070, 98 Pages, 2022/03

JAEA-Review-2021-070.pdf:4.75MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration" conducted in FY2020. The present study aims to understand migration behaviors of radionuclides in relation to the properties of concrete materials altered due to leaching, to develop a model to simulate the migration behaviors based on the experimental findings, and to analyze waste management scenarios for radioactive concrete. The focus of the study is the underground concrete structures of Fukushima Daiichi Nuclear Power Station, which is in contact with contaminated water.

JAEA Reports

Development of technology to simultaneously measure viscosity and surface tension of molten materials in reactor core (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Osaka University*

JAEA-Review 2021-046, 77 Pages, 2022/01

JAEA-Review-2021-046.pdf:2.92MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of technology to simultaneously measure viscosity and surface tension of molten materials in reactor core" conducted from FY2018 to FY2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. Since (U, Zr)O$$_{2}$$ and boride, molten materials in reactor core, exist at extremely high temperature, chemical reactions between the vessel and these molten materials are unavoidable. Therefore, it is difficult to measure the thermophysical property of these materials. In the present study, droplets are produced by heating and melting the samples levitated by a gas levitation method, then the droplets are collided with a substrate.

JAEA Reports

Report of the design examination and the installation work for the radiation shield at the beam injection area in the 3 GeV synchrotron

Nakanoya, Takamitsu; Kamiya, Junichiro; Yoshimoto, Masahiro; Takayanagi, Tomohiro; Tani, Norio; Kotoku, Hirofumi*; Horino, Koki*; Yanagibashi, Toru*; Takeda, Osamu*; Yamamoto, Kazami

JAEA-Technology 2021-019, 105 Pages, 2021/11

JAEA-Technology-2021-019.pdf:10.25MB

Since a user operation startup, the 3 GeV synchrotron accelerator (Rapid-Cycling Synchrotron: RCS) gradually reinforced the beam power. As a result, the surface dose rate of the apparatus located at the beam injection area of the RCS, such as the magnet, vacuum chambers, beam monitors, etc., increases year by year. The beam injection area has many apparatuses which required manual maintenance, so reducing worker's dose is a serious issue. To solve this problem, we have organized a task force for the installation of the shield. The task force has aimed to optimize the structure of the radiation shield, construct the installation procedure with due consideration of the worker's dose suppression. As the examination result of the shield design, we have decided to adopt removal shielding that could be installed quickly and easily when needed. We carried out shield installation work during the 2020 summer maintenance period. The renewal work required to install the shielding has been carried out in a under high-dose environment. For this reason, reducing the dose of workers was an important issue. So, we carefully prepared the work plan and work procedure in advance. During the work period, we implemented various dose reduction measures and managed individual dose carefully. As a result, the dose of all workers could be kept below the predetermined management value. We had installed removal shielding at the beam injection area in the 2020 summer maintenance period. We confirmed that this shield can contribute to the reduction of the dose during work near the beam injection area. It was a large-scale work to occupy the beam injection area during almost of the summer maintenance period. However, it is considered very meaningful for dose suppression in future maintenance works.

246 (Records 1-20 displayed on this page)